Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
3.
Reproduction ; 145(2): 203-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241345

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) like superoxide and nitric oxide are produced by testis and spermatogenic cells in response to heat stress. However, the magnitude and mechanisms of this production in spermatogenic cells have not been described. In this work, we evaluated ROS/RNS production, its pharmacology, mitochondrial oxidative metabolism, membrane potential and antioxidant capacity at different temperatures in isolated rat pachytene spermatocytes and round spermatids. Our results showed an increment in ROS/RNS production by pachytene spermatocytes when increasing the temperature to 40 °C. Instead, ROS/RNS production by round spermatids did not change at temperatures higher than 33 °C. ROS/RNS production was sensitive to NADPH oxidase inhibitor diphenylene iodonium or the mitochondrial complex I inhibitor rotenone. No additive effects were observed for these two compounds. Our results suggest an important mitochondrial ROS/RNS production in spermatogenic cells. Oligomycin-insensitive oxygen consumption (uncoupled oxygen consumption) increased with temperature and was significantly larger in round spermatids than pachytene spermatocytes, indicating a likely round spermatid mitochondrial uncoupling at high temperatures. A similar conclusion can be reached by measuring the mitochondrial membrane potential using rhodamine 123 fluorescence in permeabilized cells or JC-1 fluorescence in intact cells. The antioxidant capacity was higher in round spermatids than pachytene spermatocytes at 40 °C. Our results strongly suggest that at high temperatures (40 °C) pachytene spermatocytes are more susceptible to oxidative stress, but round spermatids are more protected because of a temperature-induced mitochondrial uncoupling together with a larger antioxidant capacity.


Assuntos
Temperatura Baixa , Temperatura Alta , Estágio Paquíteno/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermátides/metabolismo , Espermatócitos/metabolismo , Animais , Antioxidantes/metabolismo , Temperatura Corporal/fisiologia , Células Cultivadas , Resposta ao Choque Térmico/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Espermátides/fisiologia , Espermatócitos/fisiologia , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...